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Abstract. Powered by Semantic Web technologies, the Linked Data
paradigm aims at weaving a globally interconnected graph of raw data
that transforms the ways we publish, retrieve, share, reuse, and integrate
data from a variety of distributed and heterogeneous sources. In prac-
tice, however, this vision faces substantial challenges with respect to data
quality, coverage, and longevity, the amount of background knowledge
required to query distant data, the reproducibility of query results and
their derived (scientific) findings, and the lack of computational capabil-
ities required for many tasks. One key issue underlying these challenges
is the trade-off between storing data and computing them. Intuitively,
data that is derived from already stored data, changes frequently in space
and time, or is the result of some workflow or procedure, should be com-
puted. However, this functionality is not readily available on the Linked
Data cloud with its current technology stack. In this work, we introduce a
proxy that can transparently run on top of arbitrary SPARQL endpoints
to enable the on-demand computation of Linked Data together with the
provenance information required to understand how they were derived.
While our work can be generalized to multiple domains, we focus on two
geographic use cases to showcase the proxy’s capabilities.

Keywords: Linked Data, Semantic Web, SPARQL, Geo-Data, Cyber-
Infrastructure, Geospatial Semantics, VOLT

1 Introduction and Motivation

Linked Data described the paradigm for a Web of densely interconnected yet
distributed data. It provided methods and tools that dramatically ease the pub-
lication, retrieval, sharing, reuse, and integration of semantically rich data across
heterogeneous sources. Over the last few years, we have witnessed a rapid in-
crease in available data sources on the Linked Data cloud and a fast uptake of
the involved technologies in academia, governments, and industry. Nonetheless,
several key issues remain to be addressed in order to enable the full potential
of Linked Data. One of these issues is the trade-off between storing data and
computing them. To give a concrete example, if the population and area of a
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county are available, should the population density be stored as well or should
it be computed on-demand as it depends on already stored properties? Storing
such data is often problematic or even impossible for multiple reasons. Keeping
the population density in sync with a changing population is just one example.
Consequently, such statements should be computed. However, this functionality
is not readily available on the Linked Data cloud and is not fully supported by
existing query languages, endpoints, or APIs.

Recently, a variety of approaches [1, 4, 5, 9, 10] have been proposed to ad-
dress this and related issues. Here, we argue why these approaches alone are
not sufficient and propose a framework inspired by a combination of their find-
ings. Essentially, we propose a proxy1 that can transparently run on top of
any SPARQL 1.1 compliant endpoint while providing a framework for the on-
demand computation and caching of Linked Data. Going beyond existing work,
our approach also provides the provenance information required to make sense
of the (cached) results, thereby improving reproducibility. Essentially, all (de-
rived) data together with the procedures used to compute them are stored as
RDF in separate graphs.

In the following, and as space permits, we highlight key aspects of the VOLT2

proxy and framework by example. Instead of focusing on technical (implemen-
tation) aspects alone, we showcase VOLT’s capabilities by discussing two use
cases in detail. These use cases also serve as the evaluation of our work, e.g., they
demonstrate how to improve the data quality of DBpedia and reduce storage size
at the same time. While our work can be generalized to multiple domains, both
use cases focus on geo-data. We believe that the challenges introduced by spa-
tiotemporal data are ideal for discussing the need for provenance information on
the procedural (workflow) level, the difficulties resulting from keeping dependent
data in sync, and the problem that allegedly raw data was created by using some
latent assumptions that now hinder reproducibility and thus interoperability.

2 The VOLT Framework and Proxy

Work that aims at bringing API-like features to the Semantic Web typically
does so by either suggesting ways to extend SPARQL or by providing additional
functionality outside of the typical Semantic Web layer cake; see Section 4. Imple-
menting such solutions often requires a custom SPARQL engine or the adoption
of future W3C recommendations. Furthermore, running non-standard SPARQL
engines threatens Linked Data interoperability and reusability of federated and
non-federated queries alike. For these reasons, we often fail to see widespread use
of experimental technologies. Finally, most of these technologies are not trans-
parent, i.e., they require additional knowledge or at least awareness by the end
user. To overcome these issues, we strive to develop a transparent framework
that embraces the existing technology stack without any changes to SPARQL.
Our approach functions as a transparent proxy [3] to any existing SPARQL 1.1

1A working VOLT proxy prototype is available at: http://demo.volt-name.space/
2VOLT: VOLT Ontology and Linked data Technology

http://demo.volt-name.space/
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engine and thereby acts as a legitimate endpoint. When a query is issued to
the proxy, it triggers a series of interactions with the underlying, encapsulated
SPARQL endpoint before forwarding the results back to the client. In other
words, the client does not notice any difference to a regular endpoint.

In this section we introduce the general VOLT architecture, highlight impor-
tant aspects such as transparency, and give an overview of the implementation.

2.1 SPARQL as an API

The idea of using triples within the basic graph pattern of a query to invoke
computation is referred to by iSPARQL as virtual triples [5]. A virtual triple
uses the predicate to identify a procedure and effectively treats each subject and
object of the triple as an input or output to the procedure. Like virtual triples and
the magic properties3 of Apache’s ARQ, we use the triple’s predicate as a way
to identify a user-defined procedure. However, we make a distinction between
the various ways in which these special patterns are used in our framework:

Firstly, computable properties simply represent an existential relation be-
tween two named entities. For example, consider a computable property named
udf:intersects that tests for the spatial intersection between two individuals.
A client may trigger computation on the individuals :A and :B by issuing a
SPARQL ASK query with the basic graph pattern :A udf:intersects :B. Al-
ternatively, a client may find all things that intersect with :A via a SELECT
query :A udf:intersects ?other, where the object of the previous triple has
been replaced by the variable ?other. Yet another style allows the client to test
multiple computable properties on the same triple by using a variable in place
of the predicate along with a triple that constrains the variable to a specific
rdf:type. For instance, a client may discover all topological relations between two
particular regions by issuing the SELECT query :A ?relation :B. ?relation a

udf:RegionConnectionRelation. In this variation, the triple that constrains the
variable ?relation functions as a computable property trigger. It indicates the
client’s intention to invoke testing on an entire class of computable properties.

Secondly, functional triples act as interfaces for calling user-defined proce-
dures with named inputs and outputs. To invoke a procedure, functional triples
expect a primary root triple where the subject is anonymous and the object is a
blank node. The blank node object acts as a hashmap for both the input argu-
ments and output variables to the procedure. Whereas EVT4 functions accept an
ordered list of input arguments and return a single RDF term, functional triples
accept an unordered set of named input arguments, are capable of returning
multiple output bindings, and allow both inputs and outputs to be either RDF
terms or RDF graphs. Once the functional triple call is executed, the entire graph
constructed within the blank node is saved (either temporarily or persistently) to
a graph in the triplestore. Doing so enables auxiliary pattern groups within the
same query to work as if the entire functional triple’s blank node was matched

3https://jena.apache.org/documentation/query/extension.html#

property-functions
4Extensible Value Testing

https://jena.apache.org/documentation/query/extension.html#property-functions
https://jena.apache.org/documentation/query/extension.html#property-functions
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to an existing set of triples. The subject of a root triple must be an unbounded
variable or a top-level blank node (that is, anonymous) in the query as the entire
functional triple will be materialized and the subject will become a URI suffixed
by a UUID5. A functional triple example will be shown in Listing 8.

Thirdly, pattern rewriters perform special expansions to the SPARQL query
at runtime for patterns that may be otherwise impossible to write in a single
query, such as subqueries that construct RDF graphs. A pattern rewriter is
invoked by a functional triple which identifies the rewriter’s procedure along with
its input arguments. A group of query patterns gets associated to the rewriter
by exploiting the GRAPH keyword in SPARQL. Consider an example where
we want to select only the first valid object matched by a list of acceptable
predicates that are semantically equivalent (in a certain context). Say we want
to count the sum of populations given by the DBpedia dbp:population predicate
for some distinct places. Since we do not want to count the same subject twice,
we only want to match a single value for each subject. If a subject does not have
a valid numeric literal belonging to the primary predicate dbp:population, then
we opt for a secondary predicate, dbp:populationTotal. One can perform this in
a regular SPARQL query as depicted in Listing 1.

select (sum(?population) as ?totalPopulation) where {
{ ?s dbp:population ?population .

filter(isNumeric(?population))
} union {

?s dbp:populationTotal ?population .
filter(isNumeric(?population))
filter not exists {

?s dbp:population ?primary_population .
filter(isNumeric(?primary_population))}}}

Listing 1 Select the sum of population counts using a preferred order of predicates in
a query to a regular SPARQL endpoint.

As the number of predicates to test for increases, so does the number of
FILTER NOT EXISTS blocks in each new UNION group. Furthermore, if we wanted
to use a list of predicate IRIs from an RDF collection found in a triplestore,
then this selection would be impossible to perform in a single query. Employing
a pattern rewriter, we can automate building such queries in addition to having
their bindings projected onto the surrounding query level; see Listing 2.

select (sum(?population) as ?totalPopulation) where {
?matcher volt:firstMatch [

input:onVariable "?p"^^volt:Variable ;
input:useValuesFrom (dbp:population dbp:populationTotal) ;
input:sampleFromVariables ("?population"^^volt:Variable) ] .

graph ?matcher {
?s ?p ?population .
filter(isNumeric(?population)) }}

Listing 2 The ?matcher variable can be thought of as binding to the URI of a named,
transient graph. In reality, the pattern rewriter’s procedure will transform the patterns
within the GRAPH group into a new subquery. This code snippet along with the expanded
query can be seen in its entirety at https://git.io/v2Nxb .

5Universally Unique Identifier

https://git.io/v2Nxb
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2.2 Transparency and Reproducibility

A key limitation of previous approaches has been with the client’s inability to
inspect the source code behind an API function. Functions are not always trivial
and their algorithms may overlook cornercases or depend on undocumented as-
sumptions – leading to a breakdown in semantic interoperability. Our approach
is to make the source code for all procedures readily accessible to the client by
storing everything in the triplestore as RDF. Each procedure is serialized accord-
ing to the VOLT ontology6 and stored in the model graph. In order to execute
a procedure, the proxy downloads a segment of the model graph and evaluates
each step from the procedure’s sequence of instructions. A simple example of an
instruction is the assignment of a variable to an expression, e.g., ?x = ?y + ?z,
which applies the addition operator to the values stored in the variables ?y and
?z, then puts the result in the locally-scoped variable ?x. In the model graph,
this expression is serialized as an abstract syntax tree; shown in Listing 3.

... [ a volt:Assignment ;
volt:name "?x"^^volt:Variable ;
volt:gets [ a volt:BinaryOperation ;

volt:operator "+"^^volt:Operator ;
volt:lhs "?y"^^volt:Variable ;
volt:rhs "?z"^^volt:Variable ]] ...

Listing 3 Abstract syntax tree of an assignment instruction for a VOLT procedure.

In taking this approach, we are able to statically evaluate the validity of
a procedure’s RDF serialization by using an ontology. Another example of a
procedural instruction might be a SPARQL query, which has the benefit of
referential integrity in its serialized form. This implies that a client can discover a
procedure that depends on a particular IRI by querying the model graph for that
IRI in the object position of a triple. E.g., we can discover any procedures that
depend on the geo:geometry predicate by using the query shown in Listing 4.

describe ?procedure from named volt:graphs where {
graph volt:graphs { ?modelGraph a volt:ModelGraph }
graph ?modelGraph {

?procedure rdf:type/rdfs:subClassOf volt:Procedure .
?procedure (!</>)+ geo:geometry . }}

Listing 4 Discover any VOLT procedures that depend on the geo:geometry predicate
by using the nexus property path (!</>)+.

Thus, VOLT is transparent in two ways: (1) the proxy sits on top of a regular
endpoint without a client noticing any difference, i.e., computed Linked Data
behave as if they were stored in the underlying triplestore [3], and (2) procedures
(defined by users or providers) are open for inspection.

2.3 Provenance

During execution of a procedure, all SPARQL queries and function calls are an-
alyzed and recorded. Any information used during the evaluation of these trans-
actions gets serialized as RDF triples and stored into a provenance graph. Those
details are used to associate a cached triple to the inputs and expected outputs of

6https://github.com/blake-regalia/volt

https://github.com/blake-regalia/volt
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SPARQL queries and function calls which led to that result. This offers two ad-
vantages: (1) the provenance of a cached triple is stored and remains available for
inspection by which a client has the means to review source information that led
a procedure to its conclusion and (2) it enables the invalidation of stale cache.

2.4 Caching and Cache Invalidation

To improve the performance of matching query patterns against computable
properties and functional triples, we make use of caching. When caching is en-
abled by the proxy’s host, each cacheable result is diverted to a persistent output
graph instead of a temporary results graph. The input query is ultimately ex-
ecuted on the union of the source graph(s), results graph, and output graph,
known collectively as the content graph. Determining whether or not a result
should be cached depends on the ontological definition of the procedure that
was used. Caching will only take place on a result when the procedure allows
it. However, a client can bypass caching any results for the entire duration of
a query’s execution by including optional {[] volt:ignoreCache true} in the
input query. Using the OPTIONAL keyword ensures that the query is reusable
against arbitrary SPARQL engines, e.g., ones that do not run the proxy.

Each time a new triple is cached for a computable property, that triple runs
the risk of being obsolete for future queries if the contents of its original source
graph were to change. To detect this issue and protect against stale cache, we
embed a cache invalidation feature within the framework. For procedures that use
simple SPARQL queries, this may just involve confirming the existence of triples.
In these cases, a cached result may be validated by a single query directed at the
actual SPARQL engine. However, procedures that use more complex queries can
employ patterns such as property paths or aggregate functions which can only be
validated by executing those queries in full. We realize the need for an ontology
that enables serializing, with various levels of complexity, methods of result
validation for outputs of function calls and SPARQL queries given their inputs.

2.5 VOLT Procedures

The VOLT framework supports several types of user-defined procedures; each
type serves a different purpose. In the model graph, a user may define procedures
for EVT functions, computable properties, functional triples, and pattern rewrit-
ers. For each of these mediums, there is an ontological class that defines how an
associated procedure must be encoded as RDF in the user-defined model graph.
For example, a VOLT EVT function must have at least one member of type
volt:ReturnStage in the RDF collection object pointed to by the volt:stages

predicate within the procedure’s set of defining triples.
The user-defined model exists as an RDF graph which encodes each proce-

dure definition as a sequence of instructions. These instructions are limited to
the basics, such as: operational expressions, control flow, SPARQL queries, and
so on. To provide developers with the full flexibility of a programming language,
the user-defined model can be extended by scripting plugins. Plugins are ideal
for handling tasks such as complex calculations, networking, and I/O. They are
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treated as namespaced modules. A single plugin may host an array of func-
tions. For instance, we created a plugin that uses PostGIS7 to handle geographic
calculations; see Listing 5 for a call to the EVT function postgis:azimuth.

Under the hood, each plugin registers a specific namespace with the proxy by
inserting RDF statements about itself into the model graph. This information
includes metadata such as the path of the binary to execute, the path or URL
of the source code if available, the namespace IRI, and process-related configu-
ration. Anytime an EVT function call has a registered namespace, it will trigger
the corresponding plugin. If the plugin is not already running, the proxy will load
it into memory by spawning a child process. Once a plugin is running, the proxy
pipes the function name and input arguments, serialized as JSON over stdin, to
that child process. A single process may be used to run multiple tasks in series
and multiple process of a plugin may be spawned in order to run tasks in parallel.
Idle and busy processes may be terminated at the discretion of the proxy.

prefix postgis: <http://stko.geog.ucsb.edu/volt-plugins/postgis/#>
select ?angle where {

dbr:Santa_Barbara geo:geometry ?wktFrom .
dbr:Ventura geo:geometry ?wktTo .
bind( postgis:azimuth(?wktFrom, ?wktTo) as ?angle ) }

Listing 5 Calls the user-defined EVT function ‘azimuth’ in the PostGIS plugin.

2.6 Query Flow Overview

To give a brief overview of how the proxy works, we examine VOLT’s computable
property feature. In Case Study I, we will demonstrate the use of such a property
to determine the cardinal direction between Santa Barbara and Ventura. Figure
1 depicts the process of executing the procedure for stko:east as a flowchart.

Fig. 1 The execution of computable property stko:east represented by a flowchart.

7http://postgis.net/
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3 Case Studies
This section discusses two geographic use cases to showcase VOLT in action.
Each use case highlights a different capability of the framework.

3.1 Case Study I: Cardinal Directions

The four cardinal directions North (N), South (S), East (E), and West (W) are
among the most common means to express directional relations. The equal direc-
tional divisions of a compass rose are known as the four intercardinal directions,
i.e., Northeast (NE), Southeast (SE), Southwest (SW) and Northwest (NW). In
this section, cardinal directions will refer to all eight directions. Figure 2 shows
how the bearing span ω for a cardinal direction is represented. The directional-
ity is determined by testing if the azimuth between the point geometries of two
places falls within ω from the primary angle of the direction. For the 8 cardi-
nal directions, ω is set to π/8. For example, SE (stko:southeast here) covers the
range 5π/8 to 7π/8 which is measured from the positive y-axis.

According to a SPARQL query for all resources of type dbo:Place or having
a geo:geometry, there are over 1 million places in DBpedia.8 Nearly 35,000 of
them are associated to at least one triple with a cardinal direction predicate,
leading to a total of 108,818 distinct triples involved. While this number is large,
it is only a small portion (≈ 1.2%) of the potential amount of cardinal direction
relations among all places if merely storing a single triple per direction, e.g., only
storing the nearest place to the North, South, and so forth. Trying to store all
cardinal directions between all places would lead to a combinatorial explosion.

The entities contained in these triples vary widely and include macro-scale
types such as Mountain Range or Country, meso-scale types, such as City or
River, and micro-scale place types such as Hospital. Interestingly, types such
as Person also show up, likely confusing persons with the places they were
buried; e.g., dbr:Saint Mechell is dbp:north of dbr:Tref Alaw. Intuitively, and
leaving cases such as headlands and meandering rivers aside, there should be
only one cardinal direction relation between two places. Surprisingly, there are
3,411 places (involving ≈ 17,000 triples) with more than one cardinal direction
to the same entity. For instance, Chicago, IL is both dbp:east and dbp:west of
Lincolnwood, Rosemont, and Schiller Park, which is controversial. Consequently,
we are compelled to test the accuracy of cardinal directions in DBpedia.

In order to compute the cardinal direction accuracy between entities of type
dbo:Place that have one or more geo:geometry property in DBpedia, we se-
lected all combinations of geometries between two places9. Our selection yielded
136,964 results of which 91,890 matched correctly, leaving 45,084 rows (33%)
marked as incorrect. To validate that our computational representation of the
cardinal directions does not introduce bias, we show in Figure 2 that each of the
eight cardinal directions have roughly equal portions of incorrect relations. If we
consider all 133,941 cardinal direction triples in DBpedia, we find that 55,928
(42%) of them have a subject or object lacking geo:geometry, or are not of type

8All queries & experiments were performed on the stable DBpedia 2015-04 version.
9Please note that some places have more than one geometry.
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Fig. 2 The eight primary/inter-cardinal directions and their range (left) and the pro-
portional distribution of mismatched directions normalized by categorical count (right).

dbo:Place. In fact, 17,957 triples have cardinal direction relations to RDF liter-
als, 537 of which are of datatype xsd:integer. Most importantly, our argument
is that given the few correct existing cardinal direction triples, a Linked Data
user has to wonder why these specific relations are present in DBpedia and not
a comprehensive set of cardinal directions between all places. This, however,
would far exceed the total number of triples in DBpedia today. The imbalanced
cardinal direction distribution becomes immediately clear by inspecting Table 1.

Table 1 Cardinal direction accuracies of the top 20 places with the most relations.

Place Matches Total Accuracy Place Matches Total Accuracy
Wrexham 47 71 0.66 Karimnagar 27 38 0.71
Dolgellau 49 58 0.84 Ranchi 27 38 0.80
Ruthin 27 57 0.47 Shrewsbury 34 35 0.97
Bradford 29 53 0.55 Brothertoft 30 34 0.88
Bala, Gwynedd 22 47 0.47 Burton-upon-Trent 34 34 1.0
Orlando, Florida 27 47 0.57 Boston, Lincolnshire 25 33 0.76
Lichfield 43 46 0.93 Kirkby 29 33 0.88
Corwen 26 43 0.60 Ford, Shropshire 17 31 0.55
Aberystwyth 31 43 0.72 Mansfield 26 31 0.84
Derby 22 42 0.52 Glensanda 24 30 0.80

Another challenging issue is the computation of cardinal directions between
polygonal representations of places. It is straightforward to compute point-to-
point cardinal direction results on-the-fly if centroids are taken as the repre-
sentations of regions. Depending on the polygons and the representativeness of
centroids, there may be a varying degree of uncertainty associated with a cardi-
nal direction relation between two regions. For example, according to DBpedia,
the city of Ventura is linked to the city of Santa Barbara via the dbp:northwest

relation, i.e., Ventura should be located to the southeast of Santa Barbara. This
may be true for a certain point-feature representation of the cities but is not
correct for all points inside the city boundaries. In fact, by taking the Open-
StreetMap polygons for Santa Barbara and Ventura and defining a regular point
grid of 1x1 km, we can compute the probability of grid points contained in Ven-
tura to locate in the southeast of Santa Barbara (grid points). We filter out those
points which are either outside of the city boundary or in the ocean. In total,
we get 79 representative points for Santa Barbara and 88 points for Ventura. As
depicted in Figure 3, we compute cardinal direction relations between 6,952 pairs
of points in total. Our result shows that southeast is only the correct relation in
7.6% of the cases while it is east in 92.4% of the cases. That is to say that the
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DBpedia statement of Ventura being southeast of Santa Barbara is merely true
for 527 point pairs, while east is the correct relation for 6,425 other pairs. The
situation would be even more complex if we consider fuzzy-set representation
typically used for cognitive regions, e.g., downtown.

The last issue that remains to be discussed is performance. Clearly, comput-
ing cardinal directions takes longer than retrieving stored triples. A SPARQL
query for all cardinal directions of the top 20 places takes about 3.3s on DBpe-
dia’s public endpoint. A cold, i.e., non-cached, VOLT prototype computes the
same relations and returns its results (but does not yield erroneous data as does
DBpedia) in about 18s on a modern laptop. This number should be taken into
perspective by comparing it to the cache-enabled VOLT which takes only 6.9s
after an initial run. Finally, it is important to remember that queries typically
ask for the cardinal direction between a place and other geographic features and
not for hundreds of directions among 20 random places. In such real-world cases,
however, the overhead introduced by computation is relatively small.

Summing up, DBpedia currently only stores a very small, and from an end
user’s perspective, arbitrary fraction of cardinal direction relations. Approxi-
mately 33% of these relations are defective and many other need an understand-
ing of the involved uncertainties to make use of them in a reproducible setting.
For instance, there is no way for a user to understand what is returned by a
SPARQL query for cardinal directions: are the results about the closest entity
in a given direction, multiple entities, entities of the same type (e.g., the city
north of LA), and so forth. Using the VOLT proxy, cardinal directions between
all places can be computed on-demand along with provenance records that doc-
ument how the computation was done and based on which formal definitions.

Fig. 3 Uncertainty in cardinal direc-
tions for Santa Barbara and Ventura.

Fig. 4 Union of coastal counties com-
puted as adjacent to Pacific Ocean.

3.2 Case Study II: Counting Regional Population

For the second case study, let us assume that a client wants to count the total
population of California’s coastal counties. She discovers the DBpedia resources
for: North Coast of California, Central Coast of California and South Coast of
California; each of which embodies counties along the coast. Intuitively, the user
expects these three regions to be spatially disjoint and after inspecting the page
for the Central Coast, naively devises the SPARQL query shown in Listing 6.

At the time of this writing, the query from Listing 6 returns a
?costalPopulation of 2,249,558 - the same number as the population property
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select (sum(?regionalPopulation) as ?coastalPopulation) where {
?region dbp:population ?regionalPopulation .
values ?region {

<http://dbpedia.org/resource/North_Coast_(California)>
<http://dbpedia.org/resource/Central_Coast_(California)>
<http://dbpedia.org/resource/South_Coast_(California)> }}

Listing 6 Select the sum of population counts for all three CA coastal regions.

given by the DBpedia resource for the Central Coast. In fact, the South Coast
was not included since its population value is the literal “∼ 20 million” and the
North Coast does not have a population property to begin with. Therefore, since
the query does not check if each region was matched to a triple, and since the sum

aggregate function in SPARQL silently ignores non-numeric values, the result of
this query is misleading. Even more, the three coastal regions are neither con-
tinuous nor disjoint. For example, there are two coastal counties, San Francisco
County and San Mateo County, which do not belong to any of the three coastal
regions in California; they break the continuity of these regions by making a gap
in between the North Coast and the Central Coast. The regions are also not
disjoint because the Central Coast and the South Coast both include Ventura
County; this could lead to counting the population of Ventura County twice.

Clearly, the client needs a better way to select the coastal counties of Califor-
nia and should be able to validate the accuracy of their operation by inspecting
the provenance of constituent population values. By modifying our data to be
GeoSPARQL-conformant, we can build a better query as shown in Listing 7.

# count the population of coastal counties in California
select (sum(?countyPopulation) as ?coastalPopulation) where {

# get geometry of Pacific Coast as WKT
data:PacificCoast geo:hasGeometry/geo:asWkt ?pacificCoastWkt .
# use a subquery to group by place; avoid counting same place twice
{ select ?county (sample(?population) as ?countyPopulation) {

# select all California counties and geometries as WKT
?county a yago:CaliforniaCounties .
?county geo:hasGeometry/geo:asWKT ?countyWkt .
# make sure the county geometry is a polygon
filter(regex(?countyWkt, ’^(<[^>]*>)?(MULTI)?POLYGON’, ’i’))
# filter for coastal counties only
filter(geof:sfTouches(?countyWkt, ?pacificCoastWkt))
# get population of each county using best valid property name
{ # best property to use is ‘dbo:populationTotal’

?county dbo:populationTotal ?population .
filter(isNumeric(?population))

} union {
# next best property is ‘dbp:populationTotal’
?county dbp:populationTotal ?population .
filter(isNumeric(?population))
# block counties that have the preferred property
filter not exists {

?county dbo:populationTotal ?best_population .
filter(isNumeric(?best_population))

}}} group by ?county }}

Listing 7 Use GeoSPARQL to count the population of California’s coastal counties.

While the GeoSPARQL query is more likely to yield an accurate result,
the user cannot perform aggregate spatial operations. In order to check if the
entire coast was accounted for, she would have to issue a separate query in
which ?countyWkt is selected without any aggregate functions and then plot each
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geometry on a map. With the VOLT framework however, we provide namespaced
aggregate functions that construct temporary RDF graphs in the SPARQL query
from a list of results for a single variable. By keeping only the county selection
patterns in the subquery and aggregating those counties into an RDF Set, we
can then call the user-defined stko:sumOfPlaces method to sum the values of
the population properties as shown in Listing 8. Additionally, the user-defined
method can construct a single geometry feature that is the union of all coastal
counties in California. We then plot this geometry feature on a map to inspect
the areas included in our population count, as shown in Figure 4.

prefix volt: <http://volt-name.space/ontology/>
prefix input: <http://volt-name.space/vocab/input#>
prefix output: <http://volt-name.space/vocab/output#>
prefix stko: <http://stko.geog.ucsb.edu/vocab/>

# count the population of coastal counties in California
select ?population ?area where {

# in a subquery, aggregate all California’s coastal counties into a set
{ select (volt:cluster(?county) as ?setOfCounties) {

# select only California counties
?county a yago:CaliforniaCounties .
# ...that are ‘along’ the Pacific Coast (refers to a computable property)
?county stko:along data:PacificCoast . } }

# let ‘sumOfPlaces’ method compute the total population of coastal counties
[] stko:sumOfPlaces [

input:places ?setOfCounties ;
input:propertyList (dbo:populationTotal dbp:populationTotal) ;
output:sum ?population ;
output:coveredArea ?area ; ] }

Listing 8 Computes the sum of values for the first valid numeric property from
dbo:populationTotal or dbp:populationTotal for all coastal counties in California.

The stko:sumOfPlaces method is stored in the model graph as RDF triples. To
simplify the process of programming user-defined procedures in RDF, we devel-
oped the VOLT syntax and its compiler6. The language allows inline embedding
of SPARQL query fragments, dynamically-scoped variables, operational expres-
sions, and basic flow control. The VOLT source code for the stko:sumOfPlaces

method is shown in Listing 9. At runtime, the population example will cause this
method to generate the SPARQL query shown in Listing 10. Note that the VOLT
language does not invalidate our claim of the proxy being transparent and only
depending on well established W3C technologies. The language is only used to
simplify the production of ontologically-compatible RDF statements which de-
fine custom functions and optionally their connections to external systems such
as PostGIS. This language is not used for querying or any other functionality
exposed to the client. As explained before, each procedure is serialized to RDF
and stored in the model graph where it is available for public inspection.

method stko:sumOfPlaces {
input ?places decluster into ?place
input ?propertyList(list)
select ?sum=sum(?value) ?placeGeomsWkt=volt:collect(?placeWkt) {

?matcher volt:firstMatch [
input:forVariable "?property"^^volt:Variable ;
input:useValuesFrom ?propertyList ;
input:sampleFromVariables ("?value"^^volt:Variable) ] .

graph ?matcher {
?place ?property ?value .
filter(isNumeric(?value)) }
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?place geo:hasGeometry/geo:asWKT ?placeWkt }
output ?sum # shorthand for ‘output [output:sum ?sum]’
if object has output:placeGeometries {

output [output:placeGeometries ?placeGeomsWkt] }
if object has output:coveredArea {

?coveredArea = postgis:union(?placeGeomsWkt)
output ?coveredArea }

if object has output:overlap {
?overlap = postgis:union(postgis:intersectionAmong(?placeGeomsWkt))
output ?overlap } }

Listing 9 User-defined sumOfPlaces method in VOLT syntax. It accepts two inputs:
(1) a set of places whose properties should be summed and (2) a list of property IRIs
ordered by the most preferred property value to match each distinct ?place.

select (sum(?value) as ?sum)
(group_concat(?_n3_placeWkt; separator=’\n’) as ?placeGeomsWkt)

where {
# volt:firstMatch for variable ?property, use values from: (dbo:populationTotal

dbp:populationTotal). sample from variable ?value↪→
{ select ?place ?property (sample ?_sample_value as ?value)

where {
{ ?place ?property ?_sample_value .

filter(isNumeric(?_sample_value))
values ?property { dbo:populationTotal }

} union {
?place ?property ?_sample_value .
filter(isNumeric(?_sample_value))
values ?property { dbp:populationTotal }
filter not exists {

?place dbo:populationTotal ?_0_value .
filter(isNumeric(?_0_value))

}}} group by ?place ?property }
?place geo:hasGeometry/geo:asWKT ?placeWkt .
# decluster ?places into ?place
values ?place { dbr:Alameda_County dbr:Contra_Costa_County dbr:Del_Norte_County ... }
# volt:collect(?placeWkt)
bind( if(isBlank(?placeWkt), concat(’_:’, struuid()),

if(isIri(?placeWkt), concat(’<’, str(?placeWkt), ’>’),
if(isLiteral(?placeWkt),

concat(’"’,
replace(

replace(str(?placeWkt), ’"’, ’\\\\"’),
’\n’, ’\\\\n’ ), ’"’,

if(lang(?placeWkt) = ’’,
concat(’^^<’, str(datatype(?placeWkt)), ’>’),
concat(’@’, lang(?placeWkt)) )),

concat(’?’, struuid()) )))
as ?_n3_placeWkt ) }

Listing 10 A SPARQL query issued by the proxy on behalf of the client’s input query.
The client invokes the stko:sumOfPlaces method that substitutes values and subquery
selection results into its own SELECT stage, ultimately yielding this SPARQL query.

Summing up, this second use case highlights the difficulties in naively query-
ing Linked Data and the misleading results that commonly result from such
queries. We use it to showcase VOLT’s capabilities with respect to user (or
provider) defined methods and the provenance information that allows others to
inspect how the returned query results came to be.

4 Related Work
In this section we introduce work that is either related in terms of common
goals, similar technological approaches, similar target domain, i.e., geo-data, or
inspired and informed our thinking while developing the VOLT framework.



14 Blake Regalia, Krzysztof Janowicz, and Song Gao

Linked Data Services (LIDS) [9] describes a formalization for connecting
SPARQL queries to RESTful Web APIs by enabling a service layer behind query
execution. Service calls have named inputs and outputs in the query. VOLT
provides functional triples which also use named inputs and outputs in the query
to make API calls to registered plugins. Plugins execute asynchronously and may
perform networking tasks such as requests to RESTful Web APIs.

Linked Open Services (LOS) [7] sets forth the principles on how to es-
tablish interoperability between RESTful resources and Linked Open Data by
semantically lifting flat content to RDF.

The Linked Data API (LDA) [8] is used to create RESTful APIs over RDF
triple stores to streamline the process of web applications consuming Linked
Data. Similar to LDA, VOLT also runs as a SPARQL proxy and dynamically
generates SPARQL queries on behalf of the client.

Linked Data Fragments (LDF) [11] highlight the role of clients for scaling
query engines by offloading partial execution to the web browser. Since our
prototype is implemented in JavaScript, the proxy also runs as a standalone
instance in the browser. The framework only needs a connection to a SPARQL
endpoint over HTTP, or a locally emulated one such as the LDF client. In this
regard, we aim to achieve Web-Scale querying as described by Verborgh [11].

SCRY [10] is a SPARQL endpoint that allows a client to invoke user-defined
services by using named predicates in SPARQL queries. It simply identifies which
service to execute and forwards the appropriate arguments given by the associ-
ated triple. SCRY’s current implementation requires services to be implemented
as Python modules or as command-line executables. Compared to VOLT, it does
not provide the means for a client to inspect the source of user-defined services.

iSPARQL is a virtual triple approach [5] to invoking custom functions sim-
ilar to the concept of magic properties. It extends the SPARQL grammar with
a SimilarityBlockPattern production to distinguish between basic graph pattern
triples and triple-like function calls having the form ?v apf:funct ArgList [5].

The SPIN [1] framework generates entailments by issuing SPARQL queries
to perform inferencing. The framework consists of a set of vocabularies that en-
able the serialization of user-defined rules, input as SPARQL queries, directly
into an RDF graph; a technique that preserves IRI referential integrity. VOLT
also serializes SPARQL fragments and graph patterns into RDF to use as infer-
ence rules. However, SPIN requires use of a proprietary extension of the SPARQL
language to explicitly invoke computation while VOLT is designed to automat-
ically recognize the need for computation on regular SPARQL queries that are
issued as if the patterns are simply being matched to existing triples.

Logical Linked Data Compression [4] proposes a lossless compression
technique which benefits large datasets when storage and sharing may be an
issue. Similar to their compression, VOLT reduces the number of triples by us-
ing procedures to generate statements that can be deduced from source triples.
However, our approach increases the total size of a dataset when caching is en-
abled. With caching disabled, one can instead opt for computing such statements
on-demand thus saving storage space at the cost of query execution time.
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5 Conclusions
In this work we introduced the transparent VOLT proxy for SPARQL endpoints.
We outlined its core features, highlighted selected implementation details, and
presented use cases that demonstrate the proxy’s capabilities in addressing key
shortcomings that we believe prevent the wide usage of Linked Data in science.
Instead of storing triples that depend on already stored data, we propose to
compute results on-demand and then cache them. Our work goes beyond merely
reducing the amount of stored triples but also addresses quality issues as the
dependent triples have to be kept in sync with their source data, e.g., when
storing population densities in addition to population and areal data. We also
address issues of provenance and the reproducibility of results by making the
VOLT functions available and inspectable and by storing all data and procedures
that were used to arrive at certain results in a separate graph. Finally, we discuss
two use cases to demonstrate the difficulty in querying Linked Data, quality
issues in Linked Data, and the need for the implemented VOLT capabilities.

Future work will focus on improving our current prototype and making it
easier to extend and customize by others. We will also work on improving the
proxy’s performance and an alignment of our provenance and model graphs with
ontologies such as PROV-O [6] and (semantic) workflow models in general [2].
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