
Assisted Authoring of Model-Based Systems Engineering
Documents

Thomas Boyer Chammard, Blake Regalia, Robert Karban, Ivan Gomes
{thomas.boyer.chammard,blake.d.regalia,robert.karban,ivan.gomes}@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California

ABSTRACT
In systems engineering practices, system design and analysis have
historically been performed using a document-centric approach
where stakeholders produce a number of documents that represent
their views on a system under development. Given the ad-hoc, dis-
parate, and informal nature of natural language documents, these
views become quickly inconsistent. Rigor in engineering work is
also lost in the transition from model-based engineering design
and analysis to engineering documents. Once the documents are
delivered, the engineering portion of the work is disconnected. In
the Open Model Based Engineering Environment (OpenMBEE),
Cross-References (aka transclusions) synthesize relevant engineer-
ing information where model elements are not simply hyperlinked,
but de-referenced in place in a document, upgrading a document-
based process with model-based engineering technology. Those
Cross-References are nowadays partially created manually, putting
a burden on the engineer who is authoring the document. This
paper presents an approach which can assist the engineer by pro-
viding machine-generated suggestions for Cross-References using
language processing, graph analysis, and clustering technologies
on model data managed by the OpenMBEE infrastructure.

CCS CONCEPTS
• Software and its engineering→UnifiedModeling Language
(UML); System modeling languages; Model-driven software
engineering; • Information systems → Graph-based database
models; Resource Description Framework (RDF).

KEYWORDS
Graph analysis, clustering, entity linking, natural language process-
ing, OpenMBEE, MBSE, SysML

1 INTRODUCTION AND MOTIVATION
In systems engineering practices, system design and analysis have
historically been performed using a document-centric approach
where stakeholders produce a number of documents that repre-
sent their respective views on a system under development. Given
the ad-hoc, disparate, and informal nature of natural language
documents, these views become quickly inconsistent. Currently,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 California Institute of Technology. Government sponsorship acknowledged.
ACM ISBN 978-1-4503-8135-2/20/10.
https://doi.org/10.1145/3417990.3421406

dependencies between these views are often implicit or informally
defined in supplementary documents. Additionally, documents are
often accompanied by a variety of discipline-specific engineering
models that are siloed. It is often difficult to trace provenance across
the different, distributed sources of information and verify their
consistency. Moreover, the rigor of engineering work is lost in the
transition from model-based engineering design and analysis to
engineering documents. Once the documents are delivered, the
engineering portion of the work is disconnected from the resulting
artifacts. OpenMBEE is an integrated set of software applications
and services which replaces silos of information with consistent,
traceable, and precise engineering models and documents which is
a key element of Model-Based Systems Engineering (MBSE). MBSE
is the formalized application of modeling to support system require-
ments, design, analysis, verification, validation, and documenta-
tion activities, spanning the entire lifecycle of complex systems
engineering projects. In OpenMBEE, Cross-References synthesize
relevant engineering information where model elements are not
simply hyperlinked, but de-referenced in place (i.e. transcluded),
upgrading a document-based process with a model-based engineer-
ing technology. Using Cross-References, OpenMBEE upgrades a
document-based process with a model-based engineering environ-
ment. They become the rendering of model information inline with
unstructured narrative in model-based documents. Figure 1 shows
an example of the Thirty Meter Telescope1 production model in the
OpenMBEE ViewEditor which is a web-based, document oriented
editor implementing the Cross-Reference capability.

Therefore, the link to the authoritative source of information is
preserved and maintained. The use of Cross-References also pro-
vides a new means of measuring the maturity of the information
overall referred to as model hardness. Early lifecycle documents
utilize a relatively low number of Cross-References. By the end of
the life cycle, the interconnection and use of models and structured
data should be rich, which is evidenced by a large number of Cross-
References. Unstructured data indicates sections of the engineering
design which require more development, and engineers can incre-
mentally add formalism to their models as their thinking matures
from concept to design. Figure 2 illustrates this concept.

Those Cross-References are nowadays either generated by Doc-
Gen [5, 10], which provides a structured representation of docu-
ments while still allowing incorporation of unstructured data into
structured engineering data, constructing linked-data documents.
Or, they are created manually using OpenMBEE View Editor. The
latter puts a burden on the engineer authoring the document be-
cause either existing model elements have to be searched for or
inserted as Cross-Reference into the narrative or elements of the

1TMT SysML Model: https://github.com/Open-MBEE/TMT-SysML-Model

https://doi.org/10.1145/3417990.3421406
https://github.com/Open-MBEE/TMT-SysML-Model


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Chammard, Regalia, Karban, Gomes

Figure 1: A document from the TMT model rendered in the
ViewEditor web interface. Annotations shown in red:

(1) Model element, signal “Acquire and Guide Cmd”, in
the context of the rendered diagram

(2) Cross-Reference of the signalmodel element name in-
line with narrative

(3) Specification of the signal

Figure 2: A piece of engineering information, shown in blue,
exists in models, processes, and documents and is initially
disconnected. In the next step, Cross-References are used
to create linked-data documents that close the gap between
model and documentation, ensuring that they are mutually
consistent and correspondent. In the third step, those doc-
uments are made available in a collaborative space where
engineers author, review, modify, and release those docu-
ments.

document have to be turned into a model element and then Cross-
Referenced. Of course there are many model elements which are
not referenced and many text fragments which could potentially
be model elements.

In this paper, we describe our approach to assist the engineer
with creating Cross-References by automating the discovery of
likely Cross-Reference targets and proposing them for review. Rather
than taking a fully automated approach to creating transclusions,
we start with a Human-in-the-loop approach which enables the
system to collect training data for future machine-learning tasks

as well as usage statistics for latent tool evaluation. The effort fo-
cuses on mitigating the trade-off between the time spent creating
Cross-References and the consistency of the model that engineers
are currently facing, thus enhancing the process of transitioning
from a document-based to a Model-Based Systems Engineering.

The approach will be presented with a small illustrative example,
and was developed and tested on the TMT open-source SysML
model.

2 RELATEDWORK
Creating structured references to named entities out of unstruc-
tured, human-readable text documents is a well-studied topic in
Natural Language Processing (NLP). Information Extraction and
Named Entity Recognition andDisambiguation (NERD)more specif-
ically, are tasks within this domain that identify which words and
phrases within a given text fragment or document are references.
Entity Linking is an extension of this task that also determines
which entity (if any) each of those references should link to within
a given knowledge base. In this work, we apply these technologies
in a Model-Based Systems Engineering context by treating SysML
model data as a knowledge graph.

A recent study by Shen et. al [14] thoroughly describes the tech-
niques associated with Entity Linking, covering a broad spectrum
of methodologies, from graph-based approaches to unsupervised
Vector Space Model ranking methods. Hoffart et al. [9] propose a
method that builds a subgraph of entities mentioned in the text by
using an algorithm that approximates the best joint mention-entity
mappings to disambiguate. Additionally, Hakimov et. al [7] present
an approach that uses a graph-based Centrality Scoring for disam-
biguation. The work presented in this paper is similar in concept
to these approaches. Although, we will not use an open knowledge
base of entities (such as DBpedia or Wikidata), but rather the graph
of entities that constitute our Systems Engineering model.

Kalashnikov et al. use context clustering [2], and rely on relation-
ships’ connection strength as a means to perform disambiguation.
For that matter, they formulated the Context Attraction Principle
(CAP) which we use the premise to our approach for Entity Linking.

Work by Ferragina and Scaiella [6] address the unique challenges
of annotating short texts containing cross-references by demon-
strating the use of their original research tool, TAGME, to perform
entity linking against Wikipedia articles. However, TAGME does
not generalize well to our use case as it relies on a rich and broad
knowledge graph to build context for each document it analyzes.
Our approach attempts to identify the names of engineering require-
ments, systems, actions, and concepts scoped to a domain-specific
SysML model.

In Requirements Engineering, the analysis of user reviews is a
rich and growing source of information [3]. In [4], Dalpiaz et al.
propose RE-SWOT, a tool eliciting requirements from App Store
reviews through competitor analysis. This tool extracts, from cus-
tomer reviews, keywords that correspond to features of applications.
The RE-SWOT Natural Language Processing (NLP) module is very
similar to the one proposed in this paper, the goal being the extrac-
tion of patterns of Parts-Of-Speech (POS) tags, with the merging
of feature labels based on a string similarity score. The authors do



Assisted Authoring of Model-Based Systems Engineering Documents MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

not, however, proceed to any sort of disambiguation or linking to a
dictionary of existing features, as their goal is purely analytic.

3 METHODS
In order to assist the engineer with discovering transclusions in
the text documents of a given SysML model, we present a novel
technique that performs entity linking without pretrained features.
Instead, our approach relies on the Context Attraction Principle
to form an implicit context about an input text via the topology
of a knowledge graph (in this case the SysML model’s instance
data). This technique provides some basic context during the disam-
biguation phase of entity linking in the absence of more complex
models. As demonstrated by Kalashnikov et al. [11], this context
is based on the connection strength between two elements, which
is approximated in our approach by computing the length of the
shortest path between them.

We provide a simple example SysML model in Figure 4 to illus-
trate the process of how references to model elements are discov-
ered are linked within a document text.

In this initial experiment, we limit the domain to structural
SysML elements only (e.g. Blocks and Properties) in order to scope
our evaluation to a manageable subset of the model. Other ele-
ment types, such as behavioral elements, activities, and actions, are
reserved for future work.

3.1 Querying SysML Models
The data model for UML, and by extension SysML, are based on
the entity-attribute-relationship model, or the entity-relationship
(ER) model more broadly, from classical conceptual modeling and
traditional database design [1]. In their metamodels, relationships
are defined to exist between entities of certain types. When these
conceptual models are mapped to a logical schema, it is typically in
the form of a relational model or one of its derivatives. For instance,
OpenMBEE’s Model Management System (MMS) uses a key-value
database to store SysML model elements. This makes for very effi-
cient element access by certain properties, but lends itself poorly
to graph pattern matching which may involve many joins given
arbitrary-length paths. Graph models provide inherent benefits for
many natural language processing (NLP) tasks where the objective
is to create structured data out of unstructured, human-readable
text, such as named-entity recognition and disambiguation (NERD).
As we discuss in further detail below, we adapt MMS to a graph
data model by forming a knowledge graph out of SysML model
elements. Additionally, our approach materializes and appends the
results of its entity linking task into the same knowledge graph.
This knowledge graph can in turn be used to improve entity disam-
biguation, i.e., by forming a context, or “user intent” out of a given
document’s text.

RDF is a graph-based data model, language, and technology for
creating, storing, and reasoning on knowledge graphs. SPARQL is
the query language for RDF. MMS-RDF2 is a SysML to RDF con-
version tool. It first generates an OWL ontology directly from the
UML metamodel, then appends SysML extensions to that ontology,
and finally adds MMS-specific vocabulary definitions, such as prop-
erties for describing commit metadata. MMS-RDF then utilizes this
2MMS-RDF: https://github.com/Open-MBEE/mms-rdf

generated ontology to perform an Extract-Transform-Load (ETL)
on a SysML model by pulling data from MMS, transforming each
model element into a set of RDF triples, and loading the resulting
graph into a triplestore where a SPARQL endpoint is exposed for
querying. The overall process is illustrated in Figure 3. In order to
facilitate shortest path queries using a graph-traversal query lan-
guage such as Gremlin, MMS-RDF also creates a Labeled Property
Graph (LPG) view of the instance data graph, which is exposed
via Gremlin endpoint. The RDF graph includes both ABox and
TBox statements, meaning that in addition to instance data, it also
covers class hierarchies, multiplicities, and domain and range re-
strictions. On the other hand, the simpler LPG view strictly covers
instance data in order to complement RDF query capabilities, such
as graph-traversal queries for shortest paths between two nodes.

Figure 3: Starting with the SysML model in MMS, MMS-
RDF generates a complete representation of the model as
RDF, and an instance-data only view of the model as a LPG,
then pushes these to their respective graph query services
where they are exposed to our application (MMS-AutoCref)
through SPARQL and Gremlin endpoints. Finally, MMS-
AutoCref produces output results as RDF triples and inserts
them into a user-specified knowledge graph (KG).

3.2 Entity Linking
In NLP, entity linking (also referred to as entity disambiguation)
is used to predict which entity a given phrase should identify in
a knowledge base. Techniques for entity linking systems can gen-
erally be broken down into one of two categories, text-based and
graph-based. In text-based entity linking, entities are ranked based
on features trained by a corpus of documents. In graph-based entity
linking, the topology of a knowledge graph containing many linked
documents is used to generate features which attempt to capture
the context of entity relationships. It is important to note that these
two approaches can be used in tandem, although they occur at
different stages of an NLP pipeline.

In our experiment, we implement a simple entity linking system
that performs three distinct steps: (1) Parsing, (2) Selection, and (3)
Ranking. We describe each of these steps below.

Step 1: Parsing. Given a human-readable document in HTML or
plain text, strip away markup and parse the remaining text using an
NLP pipeline in order to extract all noun phrases.

Our implementation uses spaCy3, an open-source NLP library
with a python API, and a pretrained model for the English lan-
guage trained by written texts from the web including blogs, news
and comments4. The NLP pipeline we set up for this experiment
consists of three stages: (1) Tokenization, which uses a pretrained
English model to turn a series of characters into a structured series

3spaCy: https://spacy.io/
4spaCy English model: https://spacy.io/models/en

https://github.com/Open-MBEE/mms-rdf
https://spacy.io/
https://spacy.io/models/en


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Chammard, Regalia, Karban, Gomes

Figure 4: A SysML visualization of the simple illustrative ex-
ample model for this paper. In the single requirement text,
two transclusions to model elements can be identified.

of words/phrases; (2) Part-of-Speech (POS) tagging, which assigns
each token a part-of-speech label such as “noun”, “verb”, “adjective”,
and so on; and (3) noun-chunk merging, where the pretrained Eng-
lish model forms noun-phrases by merging adjacent tokens that
likely refer to an entity, e.g., “The Golden Gate Bridge”. Our objec-
tive is to find phrases in the input text that refer to named elements
in the SysML model. The string matching process is described in
Step 2.

The output string of this process is intended to replace the origi-
nal document, so any markup that was stripped away for parsing
must be restored. It’s important to note that this approach does not
preclude one from utilizing the semi-structured data found in the
original HTML document. For example, anchored texts in the in-
put documents, such as manually created cross-references to other
model elements, can be used to refine the context before entity
linking takes place. However, we see the use of semi-structured
input data as an added feature for future work, and instead focus
here on the fundamental component of working with unstructured
input text.

Figure 5: The text is first tokenized, then tokens are tagged
with PoS labels, and finally noun-phrases are formed by
merging adjacent tokens where appropriate. The noun-
phrases are now considered extracted and fed into Step 2.

Step 2: Selection. For each noun-phrase extracted from the input
text, select all named elements from the model that fuzzy match the
given noun-phrase’s token string.

Each of the noun-phrases that was extracted in Step 1 is used to
search for candidate references targets by fuzzy string matching
against the names of model elements. Each comparison is based
on the string similarity between the noun-phrase (string A) and
the name of the model element (string B). For this experiment, we

employ certain common stopwords [15] for noun-phrases, such as
ignoring the word “the” before comparison, to improve fuzzy string
matching against named model elements.

Slight variations in the text of named elements may occur in the
SysML model between the entity and its references due to a number
of reasons including typos, plurality, possessivity, and differences
in spelling caused by international collaboration (e.g., British and
American spellings of certain English words). Stemming and lemma-
tization, in which variations of a word are dealt with by reducing
them to a common, unique representation, are commonly used
techniques to overcome some of these issues. However, variations
due to typos and punctuation are not directly handled by these
techniques alone and systems typically end up using some form
of fuzzy string matching near the end of a pipeline to catch out-
liers. Levenshtein distance [8] is a metric to measure the distance
between two strings by counting the number of insertions, substitu-
tions, or deletions needed to transform string A into string B. In lieu
of more complicated techniques that require trained featuresets,
Levenshtein distance can provide an approximation for semantic
similarity between two entity names with a few modifications. We
use a modified Levenshtein distance algorithm implemented by the
python library fuzzywuzzy5, which first converts both strings to
lowercase, removes non-alphanumeric characters, computes their
Levenshtein distance, and then scores their similarity on a scale
from 0 - 100. Our primary reason for selecting this algorithm is due
to how it better compensates for shorter versus longer strings than
naive Levenshtein distance (for example, “cat” and “car” score 67
similarity while “principle” and “principal” score 89). A minimum
score of 90 was selected as the lower threshold value for determin-
ing if a given comparison should be considered as a fuzzy match.
This threshold was chosen conservatively after manually labeling
scores in trials with the TMT model. Future work will leverage a
supervised learning model to assist with score classification, and
consider techniques better suited for measuring semantic similarity.
Finally, since a single noun-phrase may match multiple element
targets, disambiguation is handled in Step 3.

Step 3: Ranking. Determine which model element out of each
reference’s choice set should be linked to based on the local SysML
model context of the input document.

At this step, we have a set of candidate model elements, i.e., a
‘choice set’, (all with high string similarity scores) for each reference
in the input document. Since some of the choices may have the
exact same name, we must use a technique that allows us to capture
the local context of the input document in order to give preference
to certain elements. Kalashnikov et al. offer a solution here in the
form of the Context Attraction Principle (CAP) for graph-based
reference disambiguation [11, 12], which states:

If reference 𝑟 made in the context of entity 𝑥 refer
to an entity 𝑦 𝑗 , whereas the description provided by
𝑟 matches multiple entities 𝑦1, . . . , 𝑦 𝑗 , . . . , 𝑦𝑁 , then 𝑥

and 𝑦 𝑗 are likely to be more strongly connected to each
other via chains of relationships than 𝑥 and 𝑦𝑙 (𝑙 =

1, 2, . . . , 𝑁 ; 𝑙).
The CAP loosely encodes the notion that the distance between

two nodes in a knowledge graph is inversely proportional to the

5fuzzywuzzy: https://github.com/seatgeek/fuzzywuzzy

https://github.com/seatgeek/fuzzywuzzy


Assisted Authoring of Model-Based Systems Engineering Documents MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

relatedness of the concepts they represent. In other words, the
closer two nodes appear in the graph, the more likely their concepts
are to be more strongly connected to each other than to concepts
belonging to nodes further away.

To give an illustration of this technique, recall the running ex-
ample from Figure 4. Three model elements are selected in Step
2 from the requirement text: Car, Car::speed and Bike::speed.
In the model, the speed attribute of the Car is 1 hop away from
Car, whereas the speed attribute of the Bike is 3 hops away from
Car. Therefore, the connection strength between Car and its owned
Car::speed property is greater than the one between Car and the
Bike::speed property. Following the CAP, because the entity Car
appears in the input document, linking the phrase “speed” results
in giving preference to Car::speed over Bike::speed.

Figure 6: Annotations on the illustrative example show-
ing relative connection strengths between the candidate el-
ements selected from the input text. Car::speed is closer to
Car than Bike::speed, hence a higher connection strength
and ultimately a higher ranking.

To assist with disambiguation, matches to other elements within
the document provide an implicit context via their connections in
the knowledge graph. To create and apply this context, we perform
agglomerative hierarchical clustering [13] on an induced subgraph
in which the shortest paths between all pairwise combinations of
nodes in the choice set are replaced by edge weights corresponding
to the lengths of those paths. In other words, the shortest path
between two nodes in the SysML knowledge graph turns into a
single edge in the derivative graph, whose weight is determined by
the number of hops in the original path. This edge weight serves
as the connection strength [11] for Kalashnikov’s CAP.

When the agglomerative hierarchical clustering algorithm is run
on the modified subgraph, the order in which the nodes entered a
cluster, or how ‘high’ they appear on the hierarchical dendrogram,
determines their ranking in the implicit context. The earlier a node
entered any cluster (i.e. the higher the proximity to other matches),
the higher the ranking and thus the more strongly related that
node’s concept is to the context.

(a) Source graph (b) Induced subgraph (c) Clustering

Figure 7: Overall process to rank candidates for disambigua-
tion. In the above diagrams, candidate entities for linking
are shown as labeled nodes. The label corresponds to which
reference token it is competing for in the text, e.g., the la-
bel “1” indicates that a node is competing for the first noun-
phrase, such as “speed”. “2” would therefore be another
noun-phrase that multiple model elements could match,
such as “cruise control”. Finally, “3” appears once, meaning
that only a single model element matched its correspond-
ing noun-phrase, such as “car”. Subfigures: (a) A selection
of the candidate entities from the source knowledge graph.
(b) An induced subgraph is created and paths are replaced
by weighted edges representing the length of the shortest
path between each pair of nodes. (c) Agglomerative hierar-
chical clustering takes place. Nodes 1-blue and 2-green en-
tered the cluster before 1-yellow and 2-orange, and are there-
fore ranked higher.

Figure 7 illustrates the process. The nodes represent model el-
ements. The colors on the nodes are mere visual aids. The ID on
each node corresponds to the noun-chunk that the model element
has been matched to. The noun-chunks 1 and 2 have each been
matched to 2 different model elements, and the noun-chunk 3 has
been matched to only one model element.

Following the hypothesis, we can now rankwhichmodel element
is the more relevant for noun-chunk 1 and 2. For noun-chunk 1, the
blue node entered a cluster before the yellow node. Therefore, the
blue node is ranked higher (meaningmore relevant) for noun-chunk
1 than the yellow node. For noun-chunk 2, the green node entered
a cluster before the orange node so the green node is ranked more
relevant.

3.3 Preliminary Experimental Output
The tests were conducted with the open-source TMT model6. We
manually annotated 175 requirements and compared the output
against our entity linking approach. Of the 175 analyzed require-
ments, 89 made references to model elements for a total of 125 tran-
sclusions. Out of these 125 transclusions, the algorithm correctly
identified 84 (67%). Of the 41 transclusions that were not identified,
30 were due to an unsuccessful comparison of the strings, most
of the time due to acronymization in the text (e.g. “M1” instead of
“Primary Mirror”, “DMS” instead of “Data Management System”).
The remainder of the unsuccessful transclusions were due to incor-
rect parsing (e.g. in a requirement like “The APT system shall [...]”,

6https://github.com/Open-MBEE/TMT-SysML-Model

https://github.com/Open-MBEE/TMT-SysML-Model


MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Chammard, Regalia, Karban, Gomes

the identified noun-phrase is “The APT system” which is too differ-
ent from the corresponding “APT” model element to be correctly
identified).

4 DISCUSSION AND LIMITATIONS
4.1 Edge Cases
The following edge cases were identified along with possible solu-
tions to them.

The input text contains only one noun-chunk token which matches
multiple model elements. In this case, disambiguation is impossible
since there are no other elements to form an implicit context. To
address this case, we suggest adding the node that corresponds to
the input document (in this case, the SysML Requirement model
element) to the subgraph before clustering takes place. In this sce-
nario, the input document node provides a default context within
the model for disambiguation. While there are several considera-
tions for how this affects the context (e.g., the package locality of
related concepts in the SysML model), future work is needed to
evaluate the alternatives.

All candidate model elements are equidistant in the induced sub-
graph. This can be especially difficult when enumerations of in-
stances have similar names (e.g. if instead of Car and Bike, we had
Car1 and Car2 in our illustrative example). However, in this case,
it becomes difficult to surmise a ground truth for disambiguation,
even for a human. As a first step, we designed our approach to take
a modest ‘backseat’ to the authoring engineers by assisting them
with choosing which occurrences should be transcluded.

4.2 Shortest path queries and connection
strength

The shortest path queries are computed using Gremlin on the LPG
view of the SysML model instance data. This is the only use we are
making of the LPG and is therefore the only reason we are required
to use both RDF and LPG. The queries for shortest paths could also
be done using the RDF graph and SPARQL. However, this would
impact our approach as explained hereafter. Transitioning from a
Gremlin to a SPARQL shortest path query would require the use
of multiple queries to probe the shortest path one hop length at
a time. Furthermore, querying the RDF graph would also require
limiting the predicates to instance data properties only, a quality
that is designed into the creation of the LPG view.

On a similar note, the connection strength used for disambigua-
tion does not need to be solely determined by the length of the
path. Currently, we are measuring the connection strength as the
length of the shortest path, which is one of the many considered
ways described by Kalashnikov et al. [17]. But since the relation-
ships in the model have different semantics, it follows that they
should weigh differently on the various connection strengths. For
example, relationships that carry a strong meaning towards the
system at a conceptual level might be prioritized over relationships
that are only inherent to the modeling methodology (e.g. contain-
ment). Future work needs to assess whether such relative weights
should be engineered in top-down manner (i.e., decided by model
designers), learned in a bottom-up approach (i.e., training models
using corpora of labeled data), or derived in a hybrid approach (i.e.,
human-in-the-loop machine learning).

4.3 Compound References
In MMS, individual references can be combined into compound
references to convey a more significant meaning. For example, a
single compound reference could consist of a value property, its
value and its unit, instead of three separate references. Presenting
the user with such compound references is not yet a feature in the
current state of our prototype, but the way the ranking step uses
clustering for disambiguation lends itself to this type of extension.

5 CONCLUSIONS AND FUTUREWORK
The presented approach allows for an assisted process of creating
transclusions by detecting them automatically within the human-
readable text of engineering documents, and then presenting them
to the engineer for review. Our approach also ensures that results
can be ranked and presented to the user by relevance, allowing for
other applications such as auto-completion and path refactoring.

In the future, we plan to enhance our process by including behav-
ioral elements (e.g. activities, actions) in the pipeline, to cover the
entire model. We also plan to improve the identification of model
elements in the text (Step 1) by training a Named Entity Recognition
[21] machine learning model, commonly used for similar tasks in
Natural Language Processing (NLP). This NER model would help
further optimize the process of ranking, by disambiguating the
type of model element that the system is looking for on a specific
text chunk. It would also provide a human-in-the-loop for labeling
data in real-time, improving the entity disambiguation (machine
learning) model as the SysML model grows and the user accepts or
rejects transclusions.

Additional directions for future include the creation of an IDE-
like auto-complete feature in View Editor, using the context of the
text as it is being typed to recommend elements of the correspond-
ing context in the model. One could also detect textual elements
that indicate importance to the narrative via information value
theorem and summarization, or suggest the creation of new model
elements based on extracted phrases. We also see the potential for
creating tranclusions to quantitative values and constraints. For
example “speed shall not exceed 90 mph” could translate into a
SysML constraint “speed<90” and an accompanying value property.

ACKNOWLEDGMENTS
This research was carried out at the Jet Propulsion Laboratory
(JPL), California Institute of Technology, under a contract with the
National Aeronautics and Space Administration (NASA).

REFERENCES
[1] Peter Pin-Shan Chen. 1976. The entity-relationship model—toward a unified

view of data. ACM transactions on database systems (TODS) 1, 1 (1976), 9–36.
[2] Zhaoqi Chen, Dmitri V Kalashnikov, and Sharad Mehrotra. 2009. Exploiting

context analysis for combining multiple entity resolution systems. In Proceedings
of the 2009 ACM SIGMOD International Conference on Management of data. 207–
218.

[3] Jacek Dąbrowski, Emmanuel Letier, Anna Perini, and Angelo Susi. 2019. Finding
and analyzing app reviews related to specific features: A research preview. In
International Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, 183–189.

[4] Fabiano Dalpiaz and Micaela Parente. 2019. RE-SWOT: from user feedback to
requirements via competitor analysis. In International Working Conference on
Requirements Engineering: Foundation for Software Quality. Springer, 55–70.



Assisted Authoring of Model-Based Systems Engineering Documents MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

[5] Christopher Delp, Doris Lam, Elyse Fosse, and Cin-Young Lee. 2013. Model based
document and report generation for systems engineering. In 2013 IEEE Aerospace
Conference. IEEE, 1–11.

[6] Paolo Ferragina and Ugo Scaiella. 2011. Fast and accurate annotation of short
texts with wikipedia pages. IEEE software 29, 1 (2011), 70–75.

[7] Sherzod Hakimov, Salih Atilay Oto, and Erdogan Dogdu. 2012. Named entity
recognition and disambiguation using linked data and graph-based centrality
scoring. In Proceedings of the 4th international workshop on semantic web infor-
mation management. 1–7.

[8] Patrick AV Hall and Geoff R Dowling. 1980. Approximate string matching. ACM
computing surveys (CSUR) 12, 4 (1980), 381–402.

[9] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Man-
fred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in text. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing. 782–792.

[10] Maddalena Jackson, Christopher Delp, Duane Bindschadler, Marc Sarrel, Ryan
Wollaeger, and Doris Lam. 2011. Dynamic gate product and artifact generation
from system models. In 2011 Aerospace Conference. IEEE, 1–10.

[11] Dmitri V Kalashnikov and Sharad Mehrotra. 2006. Domain-independent data
cleaning via analysis of entity-relationship graph. ACM Transactions on Database
Systems (TODS) 31, 2 (2006), 716–767.

[12] Rabia Nuray-Turan, Dmitri V Kalashnikov, and Sharad Mehrotra. 2007. Self-
tuning in graph-based reference disambiguation. In International Conference on
Database Systems for Advanced Applications. Springer, 325–336.

[13] Yogita Rani1 and Harish Rohil. 2013. A study of hierarchical clustering algorithm.
ter S & on Te SIT 2 (2013), 113.

[14] Wei Shen, JianyongWang, and Jiawei Han. 2014. Entity linking with a knowledge
base: Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data
Engineering 27, 2 (2014), 443–460.

[15] W John Wilbur and Karl Sirotkin. 1992. The automatic identification of stop
words. Journal of information science 18, 1 (1992), 45–55.


	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 Methods
	3.1 Querying SysML Models
	3.2 Entity Linking
	3.3 Preliminary Experimental Output

	4 Discussion and Limitations
	4.1 Edge Cases
	4.2 Shortest path queries and connection strength
	4.3 Compound References

	5 Conclusions and Future Work
	Acknowledgments
	References

